Big Data Frequent Pattern Mining
نویسندگان
چکیده
Frequent pattern mining is an essential data mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. In this chapter, we review recent advances in parallel frequent pattern mining, analyzing them through the Big Data lens. We identify three areas as challenges to designing parallel frequent pattern mining algorithms: memory scalability, work partitioning, and load balancing. With these challenges as a frame of reference, we extract and describe key algorithmic design patterns from the wealth of research conducted in this domain.
منابع مشابه
Data-performance Characterization of Frequent Pattern Mining Algorithms
Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely huge amount of data, it is quite natural that the demand for the computational environment to accelerates, and scales out big data applications increases. The important thing is, however, the behavior of big data applications is not clearly defined yet. Among big data applications, this paper...
متن کاملData Characterization towards Modeling Frequent Pattern Mining Algorithms
Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely huge amount of data, it is quite natural that the demand for the computational environment to accelerates, and scales out big data applications increases. The important thing is, however, the behavior of big data applications is not clearly defined yet. Among big data applications, this paper...
متن کاملA New Approach for Frequent Itemset Data Mining in Hadoop Environment
Frequent pattern mining is an essential data mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. In...
متن کاملAssociation Rule with Frequent Pattern Growth Algorithm for Frequent Item Sets Mining
Frequent item sets mining from the transaction dataset is one of the most challenging problems in data mining approaches. In many real world scenarios, the information is not extracted from a single data source, but from distributed and heterogeneous ones. Therefore, the discovered knowledge in this paper is generating association rules using frequent pattern growth algorithms for transactional...
متن کاملParallel Rule Mining with Dynamic Data Distribution under Heterogeneous Cluster Environment
Big data mining methods supports knowledge discovery on high scalable, high volume and high velocity data elements. The cloud computing environment provides computational and storage resources for the big data mining process. Hadoop is a widely used parallel and distributed computing platform for big data analysis and manages the homogeneous and heterogeneous computing models. The MapReduce fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014